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We explore the finite sample performance of adaptive estimators in linear time series regression 
models. Our results show that for samples of only 50 observations, the 90 percent confidence 
interval of the adaptive estimator is 20 to 50 percent smaller than the corresponding interval for 
its GLS counterpart across a range of symmetrical distributions. When the assumption of 
symmetry is relaxed smaller gains are observed. These results are sensitive to the degree of 
departure from normality and the precision of the measurement exercise. We further observe 
that the estimated standard errors are biased downward. 

1. Introduction 

Econometric modelling has been increasingly influenced by developments 
in nonparametric statistics. This is reflected in the growing popularity of 
distribution-free estimators. However, most of the research in this area has 
been directed at the asymptotic properties of these estimators with little 
attention given to their finite sample properties. This paper attempts to 
redress the imbalance by comparing the small sample behavior of several 
estimators under a variety of distributional assumptions. 

We focus upon a type of semiparametric regression model in which the 
regression function is specified exactly while the distribution of the errors is 
assumed only to lie within a broad class of distribution functions. To 
understand the generality of this approach consider the linear regression 
model in which there is a fixed set of independent variables and the error 
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density is centered at the origin. Least squares estimators of the slope 
coefficients will be consistent and asymptotically normal under a wide range 
of distributions. They will not, in general, be asymptotically efficient. Other 
semiparametric estimators exist which are asymptotically efficient under all 
densities with a finite fourth moment. Such densities encompass a wide range 
of distributions including both the familiar Student’s t-distribution, a large 
family of mixtures of normal random variables, and lognormal distributions. 

The asymptotic efficiency bound which a semiparametric estimator attains, 
often called the semiparametric efficiency bound, can be compared with the 
asymptotic efficiency bound associated with the maximum likelihood estima- 
tor. The difference between these two is a measure of the efficiency loss 
associated with the more general specification of the error distribution 
admitted by the semiparametric estimator. 

Our attention will be focused on situations in which the efficiency bound of 
the semiparametric estimator equals that of the maximum likelihood estima- 
tor. In these cases the intercept and slope coefficients can be estimated 
adaptively. The term adaptive embodies the notion that these estimators 
adapt to the sample by using the data to nonparametrically estimate a 
function of the density. Adaptive estimators can be constructed for many of 
the models used in economics and, as with all estimators, an understanding 
of their finite sample behavior is necessary before they can be applied with 
confidence. Knowledge of small sample properties is especially important 
in adaptive estimation, since the nonparametric estimator of the density 
requires several smoothing and trimming parameters over which the theory 
provides no finite sample guidance. 

In examining the finite sample behavior of adaptive estimators Hsieh and 
Manski (1987) present some promising results for the linear model with 
serially uncorrelated errors. Their Monte Carlo study, conducted across a 
range of distributions with a sample size of 50, yields an interquartile range 
for the adaptive estimator of the slope coefficient that is 30 percent smaller 
than the corresponding range for the ordinary least squares estimator. 
Further, when the sample size was reduced to only 25 observations the 
adaptive estimator continued to outperform its ordinary least squares coun- 
terpart. They also determined that while the optimal choices of the trimming 
parameters were not sensitive to the specified distribution, the choice of the 
smoothing parameter unfortunately was. Since the attractiveness of adaptive 
estimators lies in the weak distributional assumptions used to derive them, 
this could present a barrier to their application in empirical work. To 
overcome this problem we allow the data to determine directly the choice of 
the smoothing parameter. This is accomplished by choosing the smoothing 
parameter to minimize a risk function corresponding to the mean integrated 
squared error. While the methodology differs from that of Hsieh and Manski, 
the results are not quantitatively different. 
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In our study we consider a more comprehensive family of models so that a 
researcher may use it as a guide to determine when efficiency gains are 
possible. We use a linear regression framework but introduce serial correla- 
tion in the errors. Since serially correlated errors are often associated with 
serially correlated regressors, we also study a model in which the indepen- 
dent variables are autocorrelated. 

The paper is organized as follows. The next section presents a brief review 
of adaptive estimators. Section 3 describes the Monte Carlo experiments 
which are performed. The fourth section describes the results of those 
experiments, and section 5 presents concluding remarks. 

2. Adaptive estimators 

The theory defining adaptive estimators was first developed by Stein (1956) 
and then extended by Bickel (1982). While Bickel’s work incorporated 
models of interest to econometricians it did not allow for serial dependence 
of the errors. Adaptive estimators in linear regression models with serially 
correlated errors are treated formally in Steigerwald (1990,1992) where, 
unlike the work of Bickel, sample splitting is not required. These results can 
be easily extended to nonlinear regression models following the work of 
Manski (1984). A brief review of this literature should provide the reader 
with an appropriate frame of reference. 

Consider the linear regression model 

y, =x$3 + & f, t= l,...,T, (1) 

in which the errors are characterized by an autoregressive moving average 
process (ARMA) of order (p, 4) 

4 P 

Et = Ut + C Bi”*-i + C Pi&t-j* 
i=l j=l 

(2) 

The random variables, (u,), are assumed to be independent, the ARMA 
process is assumed to be stationary and invertible, and its order is known. 
When the order of the ARMA process is unknown, a consistent estimator of 
the order is all that is needed to obtain adaptive estimators [see Steigerwald 
(199211. 

If we are interested in estimating o = i/3’, p’, 0’1, then we may treat the 
other parameters characterizing the density of u as a vector of nuisance 
parameters. To understand how one can estimate w efficiently without 
specifying the distribution, let us begin with the case in which the density of 
U, f*(e), is known up to the vector 7. The likelihood function, Uylx, o, 71, 

J.Econ- P 



314 D.G. Steigewald, Finite sample behavior of adaptive estimators 

can then be used to form Fisher’s information matrix, the inverse of which 
provides our asymptotic efficiency bound. When the information matrix is 
block-diagonal, 

E[dInL(yIx,w,77)/aoalnL(yIx,w,77)/a77’] =O, 

and the asymptotic efficiency bound for o is not affected by the presence 
of q. 

If we now assume that f*< . ) is known only to lie in some convex space of 
functions, F, then the asymptotic variance of our estimator of w must be 
at least as large as when f*(.> was assumed to lie in a subfamily of F 
characterized by the parameter 7. Moreover, an adaptive estimator of w 
must satisfy an orthogonality condition that is analogous to (3). We can now 
think of the nuisance vector as being infinite-dimensional. The score function 
for o, the partial derivative of the log-likelihood function with respect to w, 
will be orthogonal to the score for this nuisance vector if the following two 
conditions hold. 

First, given the true score function, its expectation must be zero over the 
entire class F. Thus for any f an element of F, 

Ef[alnL(ylx,w,f*)/ao] =O. (4) 

Second, it must be possible to construct a nonparametric estimator of the 
score function which converges to the true score function in quadratic mean. 
Steigerwald (1990) shows that these conditions are met for the class of 
densities centered at the origin with finite fourth moments. 

The resultant estimators are two-step estimators using an initial @-con- 
sistent estimate as the starting value. Since the method of least squares 
provides consistent estimators in the models we will study, it is used to form 
the initial estimate. The adaptive estimator is then analogous to the lin- 
earized likelihood estimator (LLE), where the score function and information 
matrix are replaced with their nonparametric estimates. We know that 
one-step LLE estimators are asymptotically fully efficient and that one-step 
estimators remain consistent if we replace the true score with a fixed estimate 
of it. Adaptive estimators use an estimate of the score that converges to the 
true score, regaining full asymptotic efficiency. 

The nonparametric estimate of the density is constructed using the residu- 
als from the initial least squares regression. The density estimate is calculated 
for each of these values using a cross-validated normal kernel. For each value 
of the residuals, a distance measure is calculated between that residual and 
each of the other residuals. A normal probability density function is then 
evaluated at each of these distance measures and is averaged to produce the 
estimate of the density. Since we will be examining a derivative of this density 
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estimate, we need to define it over a small neighborhood around each of our 
residuals, e,. Let our estimator of the density at e, be defined for all z in a 
small neighborhood of each e, as 

.fJz) = [(T- l>l-’ 5 -&(Z-ee,), 
s=l. S#f 

where 5, is the probability density function corresponding to a normal 
random variable with mean zero and variance u*. This variance controls the 
amount of smoothing, as a2 decreases the weights given to residuals which 
lie some distance from e, tend to zero. 

Let the nonparametric estimator of the derivative of the density, I*(.), be 
the derivative of the function given in (51, and define the nonparametric 
estimator of the score function as 

9(w) =alnL(ylx,w,j)/k.J 

We restrict the behavior of this estimator using the following three trimming 
conditions. We set the score equal to zero if either the value of the residual is 
too large, 

letI 2 tr,, (7a) 

the value of the density estimate is too small, 

(7b) 

or the value of the ‘updating step’ is too large, 

(7c) 

We then use the outer product of the score function to estimate the 
information matrix. If we let 0 denote the OLS estimator, then our adaptive 
estimator, G, is given by 

T-l ~alnL(ylx,ii,f)/awalnL(.)/a~f 1 
-1 

i(W). (8) 
r=1 
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3. Model design 

The Monte Carlo experiments are designed to provide researchers with a 
guide to the potential gains arising from the application of adaptive estima- 
tors. They are based upon a linear model in which the error term follows 
several alternative ARMA processes and the white noise residuals are 
generated under a variety of distributional assumptions. In addition, since 
many models in economics are characterized by serial correlation in both the 
regressors and the errors, we consider both serially correlated and indepen- 
dent sequences of exogenous variables. 

Our basic linear model is given by 

y,=a+px,+& f, 

where cy = - 1, p = 1, and X, is statistically independent of E,. While it 
would be of interest to explore more complicated models to monitor the 
performance of the estimators, the resulting family of models is extremely 
broad, and any selected member is subject to the criticism that it is not 
representative of models typically encountered in practice. A sequence of 
experiments for a group of more complicated models would be extremely 
costly to perform; in fact, merely increasing the dimension of the indepen- 
dent variables in the above model is prohibitively expensive. We therefore 
restrict attention to the simple linear regression model given in (9) and 
compensate for this by including an extremely small sample size, T = 50. 

In the first class of experiments the error is assumed to be independent 
through time and E( is set equal to the white noise random variable, u,. The 
second group of experiments introduces serial correlation in the errors 
through a stationary, invertible first-order autoregression [AR(l)], 

Et = 0.5&,_, + u,. 

The third class of experiments replaces the AR(l) with an invertible first-order 
moving average process [MA(l)], 

E, = u, + osu,_,. (11) 

While this remains a one-parameter error process, the moving average 
parameter is much more difficult to estimate accurately than the autoregres- 
sive parameter, providing additional information about the importance of the 
initial estimates of the error process. 

For each of the above experiments, we allow the distribution of the white 
noise residuals to vary. We first examine the case in which u follows a normal 
distribution, to calculate the efficiency losses resulting from an unnecessary 
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Table 1 

Characteristics of the density functionsa 

Name Construction Mean Var. Skew. Kurt. 

Unimodal 1 
Unimoda12 
Unimodai 3 

Bimodal 1 
Bimodal2 
Bimodal3 

Lognormal 1 
Lognormal 2 
Lognormal 3 

0.9N(O, 1) + O.lN(O, 3) 0 1.2 0 3.75 
0.9N(O, 1) + O.lN(O, 10) 0 1.9 0 9.06 
0.9N(O,1/9) + O.lN(O, 9) 0 1.0 0 24.33 

O.SN(- 1,l) + O.SN(l, 1) 0 2.0 0 2.50 
OSN( - 3,l) + OSN(3,l) 0 10.0 0 1.38 
0.5N(- 10,l) + O.SN(lO,l) 0 101.0 0 1.04 

exp(z) where z - N(O,O.Ol) 1.01 0.01 0.30 3.16 
expfz) where z - N(O,O.lO) 1.05 0.12 1.01 4.86 
exp(z) where z - N(O, 1.0) 1.65 4.67 6.18 113.94 

Distribution 

Sample results of the tests of nonnormality 

Skew. Kurt. 

Unimodal 1 
Unimodal2 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimodal3 

Lognormal 1 
Lognormal 2 
Jognormal 3 

20% 
68% 
97% 

22% 
99% 
99.9% 

20% 13% 
71% 35% 
99.9% 94% 

“Ah of the densities are standardized to have a mean of zero and a variance of 1 for the actual 
data generation. 

weakening of assumptions. We then alter the shape of the distribution in a 
variety of ways, standardizing each distribution to have a mean of 0 and 
variance of 1. 

The two most frequently described departures from normality are thick 
tails and asymmetry. We attempt to capture the empirical concept of thick 
tails using two classes of sequences of density shape deformations. The first is 
related to the statistical definition of contamination. We study three uni- 
modal symmetric normal mixtures that are analogous to situations in which 
90 percent of the time the data are generated by a given distribution, but 10 
percent of the time they are drawn from a distribution with a larger variance. 
This corresponds, for example, to intermittent periods of noise in financial 
markets during which increased uncertainty on the part of investors leads to 
an increase in the measured variance of financial variables. 

These three mixtures, and their corresponding moment characteristics, are 
listed in table 1 as unimodal 1 through 3. All three are mean 0 by construc- 
tion, and the probability of obtaining an outlying value increases with the 
difference between the variances of the normal random variables. While each 
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of these distributions has more weight in the tails than a standard normal 
distribution, a cursory examination of fig. 1 reveals the increasing ‘peaked- 
ness’ of these mixtures. This is reflected by the increasing kurtosis summa- 
rized in table 1. A normal random variable has a kurtosis of 3. Distributions 
with a kurtosis that exceed 3 are leptokurtic and have a higher concentration 
of probability mass near their mode. Thus our first group of normal mixtures 
differs from a normal random variable in two important ways, they have 
thicker tails and more of their density mass is concentrated near the mean. 

The second sequence of normal mixtures is also constructed under the 
hypothesis that the data is drawn from two different populations. The two 
populations have different means and are selected with equal probability, 
creating bimodal distributions with tails that are thicker than a normal 
distribution%. The moment properties of these bimodal mixtures are listed in 
the first table as bimodal 1 through 3. As the distance between the means 
grows the kurtosis falls toward 1, and this is reflected in fig. 2 by the 
decreasing height of the density function near 0. We see that this group of 
symmetric normal mixtures is also characterized by thicker tails than a 
normal distribution, yet these have less of their density mass concentrated 
near the mean. 

Many empirical problems are characterized by skewed distributions, and 
we introduce this departure from normality in the form of the lognormal 
family. Our three skewed distributions, listed in table 1 as lognormal 1 
through 3, exhibit an increase in both skewness and kurtosis as the variance 
of the underlying normal random variable increases. This can be readily seen 
in fig. 3, where the increasing asymmetry is associated with a more peaked 
density. 

In applied problems researchers will not know the true underlying error 
distribution and must rely upon summary measures to detect departures from 
normality. It is of interest to see how sensitive these tests are to the densities 
we are using. Two of the most common tests measure the sample skewness 
and the sample kurtosis. The hypothesis of normality is rejected when either 
the first differs significantly from zero or the second differs significantly from 
three. 

The top half of table 1 presents the relevant population values for our 
densities, and the bottom half presents the test results based upon the 
generated samples. For each sample, constructed under the assumption that 
the errors are independent, estimates of the skewness and kurtosis are 
obtained. The lower portion of the first table reports how frequently a test of 
the null hypothesis of a normal data-generating process is rejected at the 5 
percent level. [The critical values of these tests for a sample of size 50 are 
given in White and MacDonald (198OJ.l For each of the symmetric distribu- 
tions the rejection proportions are given for the kurtosis test, while for the 
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lognormal distributions these rejection proportions are calculated for both 
the skewness and kurtosis tests. 

For each combination of error process and white noise density, the 
exogenous variable is generated in two different ways. In one case X, is a 
Bernoulli random variable with an equal probability of assuming either 0 or 
1. In the second, X, follows a stationary and invertible AR(l), 

X, = 0.7x,_, + 77,) (12) 

where 7, is drawn from the standardized lognormal 3 distribution. While the 
second model for X, incorporates serial correlation, a common property of 
the regressors when the error is serially dependent, it also increases the 
variation in X, giving rise to the more precise estimation results in the 
experiments that follow. 

A Monte Carlo experiment involves the selection of the error process, the 
white noise density, and the exogenous variable process. The initial estimate 
used to construct both the LLE and adaptive estimators is the OLS estimate. 
The initial consistent estimate of the autoregressive parameter is obtained by 
regressing E, on 8,_ ,. For the moving average coefficient, the autocorrelation 
function is obtained and an iterative solution involving the autocovariance is 
used. 

The values of the trimming parameters are chosen in such a way that when 
the underlying density is normal, all three are binding at the same value. This 
implies that tr, = 

T is the sample size and A,, = (uI - u,)/(T. In the Monte Carlo 
experiments that follow we minimize the sample mean integrated squared 
error. That is, we use the observed 2’s to construct u from eq. (13) for each 
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trial. The resulting value of (+ is then used to construct the cross-validated 
density estimator described in eq. (5). 

4. Results 

The finite sample performance of the adaptive estimator can be judged in 
two ways. One is to compare the efficiency of the adaptive estimator with that 
of its OLS or GLS counterpart, depending upon the correlation structure of 
the errors. This reveals the efficiency gains arising from the use of adaptive 
estimators when a researcher feels that the assumption of normality is not 
justified but the exact distribution is unknown. Another important indicator 
of finite sample performance is obtained by comparing the adaptive estimator 
with the linearized likelihood estimator. This is also constructed using the 
one-step procedure given in eq. @), the difference is that the LLE uses the 
actual score function while the adaptive estimator uses the nonparametric 
estimate of the score based upon eq. (6). We impose the same trimming 
conditions on each, and thus can compare these two to gauge how well the 
nonparametric estimate of the score function is performing. Our results are 
based on 10,000 Monte Carlo replications of each experiment unless other- 
wise noted. We carry out each of these experiments with samples of size 50 
and 500. 

To measure the efficiency gains we calculate the root mean squared error 
(RMSE) directly from the sampling distributions of the estimators. We focus 
on the performance of the estimator of the slope coefficient, /3, because 
under asymmetrical innovation distributions (Y is not adaptively estimable 
and the parameters of the error distribution are typically of secondary 
importance. For a sample of size 50 the results are given in tables 2 through 
4. Each table corresponds to a different ARMA process for the errors. In 
addition, each table is divided into two panels, the top panel employs 
independent regressors while the bottom panel uses serially correlated re- 
gressors. Since the results are broadly similar across both classes of regres- 
sors, we will treat them simultaneously unless we explicitly state otherwise. 

Table 2 presents the results of the experiment in which the errors are 
independent. The performance of the OLS estimator is roughly constant 
across trials showing that it is robust for the given distributions. Under 
normality, the OLS estimator is equivalent to the maximum likelihood 
estimator (MLE), and since the LLE uses it as its starting value, no addi- 
tional step is necessary producing the equivalence of the LLE and the OLS 
estimator. As the departure from normality grows, the RMSE of the LLE 
typically falls indicating the potential efficiency gains. One notable exception 
to this is the bimodal 3 mixture where the RMSE of the LLE is substantially 
larger than for the bimodal 2 mixture. To understand this note that the LLE 
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Normal 

Unimodal 1 
Unimodal2 
UnimodaI3 

Bimodal 1 
Bimoda12 
Bimodal3 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimodal2 
Bimodal3 

Lognormal 1 
Lognormal 2 
Lognormal 3 

- 

- 

Table 2 

Root mean squared error for /?, T = 50. 

eI * Independent 

OLS ADAPT” 

x - Bernoulli 

0.2888 0.3191 

0.2876 0.3194 
0.2857 0.2766 
0.2834 0.1982 

0.2871 0.3206 
0.2865 0.1990 
0.2855 0.2702 

0.2888 0.2993 (0.2883) 
0.2827 0.2903 (0.2768) 
0.2883 0.2385 (0.2249) 

_______ 

x - Lognormal, AR(l) 

0.1470 0.1667 

0.1466 0.1643 
0.1463 0.1480 
0.1453 0.1140 

0.1456 0.1749 
0.1453 0.1114 
0.1453 0.1091 

0.1473 0.1584 (0.1565) 
0.1473 0.1584(0.1565) 
0.1503 0.1187(0.1212) 

LLE 

0.2888 

0.2795 
0.2400 
0.1619 

0.2816 
0.1572 
0.2490 

0.2456 
0.2724 
0.2700 

0.1470 

0.1446 
0.1285 
0.0964 

0.1490 
0.1025 
0.1378 

0.1334 
0.1539 
0.1265 

“Based on 1000 Monte Carlo simulations. For the lognormal densities, the value in parenthe- 
ses corresponds to tr, = 16. 

is a one-step estimator and performs best when the likelihood function is 
globally quadratic. The bimodal 3 mixture is far from globally quadratic, 
impairing the performance of the LLE. 

When comparing the adaptive estimator with the OLS estimator, the 
efficiency gains of the former tend to increase as the departure from 
normality grows. In the case of the normal and ‘nearly normal’ distributions 
(unimodal 1, bimodal 1, and lognormal 1) the adaptive estimator’s RMSE is 
roughly 10 percent larger than the RMSE for the OLS estimator. For these 
slight departures from normality any potential gains available from estimat- 
ing the score function are outweighed by the costs resulting from the 
imprecision of the score estimators. 

For the other symmetric distributions the adaptive estimator provides 
substantial efficiency gains. With the exception of the unimodal 2 mixture, for 
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which the adaptive and OLS estimators are comparable, the RMSE of the 
adaptive estimator is on average 30 percent smaller than its OLS counterpart 
for a sample with only 50 observations. For the remaining two lognormal 
densities we find that only the lognormal 3 represents a departure from 
normality that is substantial enough to provide efficiency gains and here the 
RMSE of the adaptive estimator shrinks by 25 percent. 

The extreme peaks of several of the bimodal and lognormal densities 
causes the ratio of f to f to far exceed that for the normal distribution in 
neighborhoods of these peaks. Since many of the observations fall in this 
range, excessive trimming may result from our initial choice of tr3. To 
investigate this, we selected different values for tr3, and found that they 
typically impaired the performance of the adaptive estimators for the bi- 
modal densities. Under the lognormal densities the results were less clear. 
Surprisingly, the gains from relaxing the trimming parameter do not necessar- 
ily increase with the departure from normality and they carry with them a 
reduction in the accuracy of the standard errors (a point we will address 
below in our discussion of the empirical size of the tests). We have reported 
both results for comparison purposes. 

In comparing the adaptive estimator with its LLE counterpart we are able 
to measure the extent to which the nonparametric estimator of the score 
function captures the potential efficiency gains. As described above, under 
the normal and ‘nearly normal’ distributions the adaptive estimators achieve 
none of the gain. For most of the other symmetric mixtures, the adaptive 
estimators capture between 20 and 80 percent of the possible efficiency gains. 
The two exceptions are the unimodal 2 and bimodal 3 mixtures, both in the 
lower panel. For the unimodal 2 mixture the adaptive estimator has a slightly 
larger RMSE than the OLS estimator, indicating that with only 50 observa- 
tions the density is too similar to a Gaussian to provide any efficiency gains 
from estimation. When the underlying density is the bimodal 3, the adaptive 
estimator outperforms the LLE. This seems anomalous. While the two 
estimators are asymptotically equivalent, the LLE should dominate the 
adaptive estimator in finite samples. To understand this finding, observe that 
the two steep peaks of the bimodal 3 mixture make it difficult for a one-step 
estimator to maximize the likelihood function with a small amount of data. 
The adaptive estimator relies upon a smoothed version of the empirical 
density, and this smoothing improves the performance of a one-step es- 
timator. 

Concentrating upon the case in which tr, = 8, we have mixed results when 
the density is lognormal. As alluded to above, for the lognormal 1 and 
lognormal 2 densities, OLS outperforms the adaptive estimator for samples 
of size 50 and none of the efficiency gains are realized. For the lognormal 3, 
the adaptive estimator has a smaller RMSE than the LLE. In this case, as in 
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Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

0.3311 

0.3306 
0.3283 
0.3233 

0.3353 
0.3317 
0.3181 

0.3239 
0.3237 
0.3118 

x 5 Bernoulli 

0.2612 

0.2600 
0.2565 
0.2496 

0.2546 
0.2528 
0.2538 

0.2629 
0.2629 
0.2581 

- 

0.3271 

0.3143 
0.2795 
0.2358 

0.2663 

0.2610 
0.2243 
0.1962 

0.3116 0.2663 
0.2298 0.2232 
0.2156 0.2975 

0.2917(0.2888) 0.2371 
0.2938 (0.2871) 0.2538 
0.2269 (0.2326) 0.2718 

Normal 0.2229 

x - Lognormal, AR(l) 

0.1992 

0.1992 

0.2456 0.2057 

Unimodal 1 0.2202 
Unimoda12 0.2170 
Unimoda13 0.2149 

0.1997 
0.2012 

0.2364 0.2012 
0.2124 0.1803 
0.1697 0.1523 

Bimodal 1 0.2256 0.1897 0.2443 0.2161 
Bimoda12 0.2278 0.1879 0.1954 0.1847 
Bimoda13 0.2283 0.1884 0.1876 0.2198 

Lognormal 1 0.2258 0.2022 0.2252(0.2128) 0.1985 
Lognormal 2 0.2258 0.2022 0.2223 (0.2227) 0.2207 
Lognormal 3 0.2313 0.1960 0.1884(0.2020) 0.2066 

D.G. Steigerwald, Finite sample behavior of adaptive estimators 

Table 3 

Root mean squared error for j, T = 50. 

E, =0.5&,-t + u, 

OLS GLS” ADAPTa LLE 

“Based on 1000 Monte Carlo simulations. For the lognormal densities, the value in parenthe- 
ses corresponds to tr3 = 16. 

the case of the bimodal 3 mixture, the adaptive estimator uses a smoothed 
likelihood function. In addition, between 5 and 10 percent of the observa- 
tions are trimmed from the LLE because they have a negative value. 

The results from the experiments in which E follows an AR(l) are 
presented in table 3. Once again we see that OLS provides an estimator that 
is robust to the underlying distribution, but it is dominated by the feasible 
generalized least squares estimators (GLS) that incorporate an estimator of 
the nonscalar covariance matrix of the errors. A comparison of the GLS 
estimator with the LLE is consistent with the table 2 findings regarding the 
OLS estimator and the LLE. Introducing serial correlation eliminates the 
equivalence of the least squares estimator and the LLE under normality, 
since the starting point for the LLE (the OLS estimator) is no longer 
equivalent to the MLE. Once again the shape of the bimodal 3, lognormal 2, 
and lognormal 3 densities causes the LLE to behave rather poorly. 
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With the introduction of an AR(l) error process we see that the use of the 
OLS estimator in the first stage has substantial efficiency effects for the 
adaptive estimator. Its efficiency loss relative to the GLS estimator for 
the normal and nearly normal densities has jumped to an average increase in 
the RMSE of 20 percent. This is only slightly less than the efficiency loss that 
results when the serial dependence in E is ignored and OLS is used. The 
other symmetric distributions provide similar results, an average reduction in 
the RMSE of only 8 percent for the adaptive estimator, while for the 
unimodal 2 mixture the adaptive estimator has an RMSE that is roughly 8 
percent larger. The remaining two lognormal densities present the same 
pattern with the efficiency loss growing to 10 percent for the lognormal 3. 

The poor performance of the adaptive estimator just described reduces the 
range of experiments over which it achieves efficiency gains. For the cases in 
which we can compare the adaptive estimator with the LLE, we find that the 
estimator of the density is not working quite as well in the AR(l) experiment. 
For the unimodal 3 mixture the semiparametric estimator captures roughly 
45 percent of the efficiency gains indicated by the LLE, as opposed to the 65 
percent captured in the previous experiment. For the bimodal 2 mixture the 
captured gains are reduced from 75 to roughly 15 percent in moving from 
table 2 to table 3. Once again for both the bimodal 3 and lognormal 3 
densities the adaptive estimator performs substantially better than the LLE 
owing to its smoothed likelihood function. 

The fourth table presents the root mean squared errors associated with the 
experiments in which the errors follow an MA(l) specification. Here the 
results differ dramatically from those presented in table 3. In moving from an 
autoregressive error process to a moving average error process we have 
reduced the efficiency of the GLS estimators relative to their OLS counter- 
parts. This is reflective of the difficulty that arises in any moving average 
estimation problem. Unlike an autoregression, the regressors in a moving 
average are unobservable and the need to determine their value increases the 
variance of the error parameter estimators. This effect on the GLS estimators 
is so pronounced that in the lower panel, representing the situation in which 
p can be more precisely estimated, the RMSE of the OLS estimators is 10 
percent smaller than the GLS estimator on average. 

In contrast to the results from table 3, the use of the OLS estimator in the 
first stage of forming the adaptive estimator no longer results in substantial 
efficiency losses. In comparing the semiparametric and least squares methods 
we find that even for the normal and nearly normal densities the adaptive 
estimator has a smaller RMSE than the GLS. For the other symmetric 
mixtures the adaptive estimator outperforms the GLS estimator in all cases 
with an average reduction in the RMSE of 20 percent. The remaining 
lognormal densities provide similar results; the adaptive estimator has a 
smaller RMSE in all cases with an average reduction of 15 percent. 
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Table 4 

Root mean squared error for j?, T = 50. 

E,=U~+O.SU,_, 

OLS GLSa ADAPTa LLE 
- 

Unimodal 1 
Unimodal2 
Unimodal3 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimodal2 
Unimodal3 

Bimodal 1 
Bimodal2 
Bimoda13 

0.2993 

0.3158 
0.3143 
0.3135 

0.3028 
0.3195 
0.3051 

0.3217 
0.3192 
0.3017 

- 

x - Bernoulli 

0.2978 

0.2960 
0.2876 
0.2735 

0.3220 
0.3105 
0.2970 

0.3032 
0.3038 
0.2843 

0.1975 

0.1934 
0.1931 
0.2037 

0.1992 
0.1942 
0.1931 

x - Lognormal, AR(l) 

0.2207 

0.2177 
0.2198 
0.2133 

0.2269 
0.2149 
0.2186 

0.3110 

0.3105 
0.2811 
0.2261 

0.2617 

0.2742 
0.2496 
0.2027 

0.3069 0.2659 
0.2480 0.2364 
0.2398 0.285 1 

0.2990(0.2883) 0.2587 
0.3030(0.2934) 0.2769 
0.2476 (0.2550) 0.2678 

0.2107 0.1905 

0.2252 0.1838 
0.2015 0.1786 
0.1706 0.1449 

0.2256 0.1980 
0.1797 0.1603 
0.1670 0.1814 

Lognormal 1 0.1860 0.2280 0.2045 (0.2012) 0.1729 
Lognormal 2 0.1960 0.2283 0.2059 (0.1934) 0.1975 
Lognormal 3 0.2081 0.2179 0.1631(0.1646) 0.1903 

- 
“Based on 1000 Monte Carlo simulations. For the lognormal densities, the value in parenthe- 

ses corresponds to tr3 = 16. 

To investigate the sensitivity of our results we carry out the same sequence 
of experiments with a sample size of 500. Table 8 corresponds to the design 
with independent errors. Since the above results indicate that altering the 
trimming parameter does more harm than good, we focus on tr, = 8. Once 
again the performance of the OLS estimator is roughly constant across 
distributions, and the increase in the number of observations leads directly to 
a reduction in the corresponding RMSE by a factor of 3 in the upper panel 
and by a factor of 5 in the lower panel. In constructing the adaptive 
estimators, we have employed the smoothing parameter values that were 
chosen from our experiments with 50 observations. Using the entire sample 
to form the smoothing parameter affects the RMSE only slightly but in- 
creases the empirical test size dramatically. We address this point at greater 
length in the discussion on empirical test sizes given below. 
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Table 5 

Empirical size of a nominal 5 percent test, T = 50. 

E, - Independent 

OLS ADAPTa LLE 

x - Bernoulli 

Normal 0.0556 0.2530 0.0834 

Unimodal 1 0.0546 0.2710 0.0781 
Unimodal2 0.0557 0.2760 0.0576 
Unimodal3 0.0432 0.2560 0.0262 

Bimodal 1 0.0627 0.2200 0.0793 
Bimodal2 0.0601 0.2890 0.0247 
Bimodal3 0.0598 0.3660 0.0620 

Lognormal 1 0.0538 0.2920(0.3540) 0.0603 
Lognormal 2 0.0538 0.2540 (0.3160) 0.0742 
Lognormal 3 0.0560 0.3130 (0.4420) 0.0729 

x - Lognormal, AR(l) 

Normal 0.0572 0.2390 0.0216 

Unimodal 1 0.0582 0.2250 0.0209 
Unimodal2 0.0593 0.2710 0.0165 
Unimoda13 0.0618 0.2670 0.0093 

Bimodal 1 0.0581 0.2380 0.0222 
Bimodal 2 0.0544 0.3110 0.0105 
Bimoda13 0.0544 0.2100 0.0190 

Lognormal 1 0.0579 0.2730(0.3330) 0.0178 
Lognormal 2 0.0579 0.2730(0.3330) 0.0237 
Lognormal 3 0.0562 0.2890(0.4660) 0.0160 

“Based on 1000 Monte Carlo simulations. For the lognormal densities, the numbers in 
parentheses correspond to trj = 16. 

In comparing the adaptive estimator with OLS we still find efficiency losses 
of nearly 10 percent when the errors are normally distributed. For the ‘nearly 
normal’ distributions, the increase in the sample size reduces, and in one 
case eliminates, the efficiency losses suffered when estimating the score 
function nonparametrically. The most striking gains are for the lognormal 1, 
where the adaptive estimator has an RMSE that is between 10 and 20 
percent smaller than its OLS counterpart. The two estimators are now 
roughly equivalent for the bimodal 1, while under the unimodal 1, the closest 
density to the normal, the adaptive estimator still suffers losses of slightly less 
than 10 percent. 

The other symmetric distributions reveal similar gains. For the remaining 
bimodal mixtures, the adaptive estimator has an RMSE that is on average 2.5 
times smaller than its OLS counterpart. For the unimodal mixtures the 
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Table 6 

Empirical size of a nominal 5 percent test, T = 50. 

EI = OS&,_, + u, 

OLS 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimodal 2 
Bimoda13 

0.1720 0.2920 0.0710 

0.1720 0.3120 0.0830 
0.1600 0.3360 0.1070 
0.1530 0.3770 0.1680 

0.1860 0.2790 0.0710 
0.1860 0.4210 0.0730 
0.1840 0.3380 0.1100 

0.1790 0.313OtO.3660) 0.0700 
0.1800 0.3080 (0.3860) 0.0820 
0.1710 0.3630 (0.5470) 0.1210 

“Based on 1000 Monte Carlo simulations. For the lognormal densities, the numbers in 
parentheses correspond to trj = 16. 

Lognormal 1 
Lognormal 2 
Lognormal 3 

x - Lognormal, AR(l) 

0.0400 

0.0700 
0.0700 
0.0300 

0.0900 
0.0500 
0.0600 

0.1000 
0.0700 
0.0400 

0.0588 0.3100 0.0530 

0.0670 0.2940 0.0580 
0.0640 0.2980 0.0600 
0.0480 0.3310 0.0980 

0.0580 0.2770 0.0420 
0.0610 0.3520 0.0800 
0.0470 0.3260 0.1170 

0.0610 0.3150(0.3620) 0.0220 
0.0610 0.294OtO.3460) 0.0860 
0.0420 0.2770(0.4520) 0.1590 

x - Bernoulli 

0.0400 

0.0300 
0.0400 
0.0400 

0.0400 
0.0500 
0.0600 

0.0400 
0.0500 
0.0300 

GLS” ADAPT a LLE 

adaptive estimator outperforms OLS in each case, reducing the RMSE by 
roughly 10 percent for the second unimodal mixture and by a factor of 2 
under the unimodal 3 density. With a sample of size 500, the adaptive 
estimator is able to exploit the departures from normality contained in each 
of the remaining lognormal densities shrinking the RMSE by more than 60 
percent. 

To measure the effects of the sample size on the nonparametric density 
estimator we focus on the performance of the adaptive estimator relative to 
the LLE. With the exception of the lognormal 1, the adaptive estimator is 
unable to capture any of the efficiency gains for the normal and ‘nearly 
normal’ densities. For the remaining densities, the captured gains increase by 
at least 20 percentage points when the sample size grows. Once again 
the adaptive estimator outperforms the LLE for the third density in both the 
bimodal and lognormal classes indicating that the smoothing induced by the 
kernel estimator improves the performance when only one step is taken. 
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Table 7 

Empirical size of a nominal 5 percent test, T = 50. 

E* = u, + 0.5u,_ * 

391 

OLS GLS” ADAPTa LLE 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

0.0430 

0.0560 
0.0500 
0.0490 

0.0540 
0.0610 
0.0520 

0.0660 
0.0600 
0.0600 

0.1110 

0.1180 
0.1230 
0.1210 

0.1300 
0.1080 
0.1400 

0.1200 
0.1330 
0.1130 

x - Bernoulli 

0.1300 

0.1300 
0.1200 
0.0700 

0.1200 
0.1200 
0.1600 

0.1500 
0.1000 
0.1100 

x - Lognormal, AR(l) 

0.1000 

0.1400 
0.1200 
0.0700 

0.1300 
0.1100 
0.1800 

0.1400 
0.1100 
0.1300 

0.3190 0.1060 

0.3200 0.1410 
0.3150 0.1330 
0.3360 0.1370 

0.3040 0.1400 
0.3340 0.1310 
0.3470 0.1960 

0.3940(0.3860) 0.1200 
0.3440(0.3810) 0.0860 
0.3480(0.5190) 0.1860 

0.2860 0.1100 

0.3150 0.1080 
0.3330 0.1130 
0.3760 0.1240 

0.2760 0.1050 
0.3820 0.1550 
0.3480 0.1730 

0.3360(0.3720) 0.1080 
0.3110 (0.3490) 0.1590 
0.3490(0.4980) 0.1840 

“Based on 1000 Monte Carlo simulations. For the lognormal densities, the numbers in 
parentheses correspond to tr3 = 16. 

Table 9 presents the simulation with an AR(l) error when the sample size 
is 500. In comparing the GLS estimators with the adaptive estimators, the 
efficiency losses for the normal and nearly normal densities now average less 
than 5 percent across both panels. In one case, the lognormal 1 in the upper 
panel, the adaptive estimator’s RMSE is nearly 20 percent smaller than its 
GLS counterpart. For the remaining symmetric distributions the adaptive 
estimator has an RMSE that is on average 75 percent less than its GLS 
counterpart, and for three of the eight simulations the GLS RMSE is more 
than twice as large as its adaptive counterpart. With the increase in the 
sample size substantial efficiency gains are realized for all but one of the 
remaining lognormal simulations, and in one case again the GLS RMSE is 
double the size of the adaptive RMSE. 

In comparing &he adaptive estimator with the LLE, the larger sample size 
has reduced to 7 the number of simulations in which the adaptive estimator 
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Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Table 8 

Root mean squared error for i, T = 500. 

E, - Independent 

OLS ADAPT” LLE 

x - Bernoulli 

0.0887 0.0972 0.0887 

0.0900 0.0939 0.0882 
0.0898 0.0824 0.0735 
0.0896 0.0389 0.0344 

0.0901 0.0918 0.0858 
0.0882 0.0323 0.0303 
0.0900 0.0456 0.0465 

0.0902 0.0750 0.0784 
0.0900 0.0787 0.0729 
0.0901 0.0437 0.0976 

..~ 

x - Lognormal, AR(l) 

0.0342 0.0372 0.0342 

0.0340 0.0360 0.0335 
0.0344 0.0322 0.0288 
0.0343 0.0172 0.0160 

0.0344 0.0344 0.0331 
0.0337 0.0149 0.0157 
0.0344 0.0117 0.0264 

0.0339 0.0309 0.0298 
0.0339 0.0310 0.0295 
0.0345 0.0213 0.0430 

aBased on 1000 Monte Carlo simulations. 

captures none of the gains achieved by the LLE. For the second and third 
unimodal densities the realized efficiency gains increase by 20 percent. For 
the corresponding bimodal mixtures the larger sample size allows the adap- 
tive estimator to dominate its one-step counterpart everywhere. As alluded to 
earlier this results from the smoothed likelihood function created from the 
nonparametric kernel estimator which presents an easier one-step minimiza- 
tion problem than the true likelihood when the latter is not well approxi- 
mated by a quadratic function. This carries over to the final two lognormal 
densities where efficiency gains are now realized in three of the four 
experiments, in two of which the adaptive estimator outperforms the LLE. 

The MA(l) experiment with the larger sample size is presented in table 10. 
Efficiency gains are now realized for every simulation in both panels. Gains 
average nearly 15 percent for the normal and nearly normal densities and 70 
percent for the additional two lognormal densities. The remaining symmetric 
distributions are characterized by GLS RMSE’s that on average are more 
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Table 9 

Root mean squared error for 6, T = 500. 

&,=0.5&1_, +u* 

OLS GLS” ADAPT = LLE 

x - Bernoulli 

Normal 0.1031 0.0775 

Unimodal 1 0.1050 0.0819 
Unimodal2 0.1044 0.0800 
Unimoda13 0.1049 0.0812 

Bimodal 1 0.1023 0.0768 
Bimodal2 0.1043 0.0806 
Bimodal3 0.1038 0.0768 

Lognormal 1 0.1033 0.0825 
Lognormal 2 0.1021 0.0849 
Lognormal 3 0.1032 0.0866 

x - Lognormal, AR(l) 

Normal 0.0565 0.0490 

Unimodal 1 0.0557 0.0447 
Unimoda12 0.0572 0.0447 
Unimodal3 0.0573 0.0436 

Bimodal 1 0.0565 0.0469 
Bimoda12 0.0578 0.0458 
Bimoda13 0.0574 0.0447 

Lognormal 1 0.0566 0.0458 
Lognormal 2 0.0566 0.0469 
Lognormal 3 0.0569 0.0480 

“Based on 1000 Monte Carlo simulations. 

0.0876 0.0801 

0.0878 0.0799 
0.0746 0.0666 
0.0364 0.0340 

0.0827 0.0773 
0.0305 0.0328 
0.0421 0.0694 

0.0692 0.0715 
0.0738 0.0669 
0.0371 0.1176 

0.0498 

0.0517 
0.0431 
0.0302 

0.0492 
0.0302 
0.0222 

0.0450 
0.0471 
0.0361 

0.0470 

0.0456 
0.0407 
0.0292 

0.0456 
0.0346 
0.0473 

0.0436 
0.0464 
0.0568 

than twice as large as the adaptive RMSE’s. The adaptive estimator now 
captures at least 60 percent of the available gains for all the nonnormal 
densities, and in half of the cases it outperforms the LLE. 

The above discussion pertains exclusively to the RMSE constructed from 
the sampling distributions of the estimators. While providing much useful 
information on the accuracy of the estimators, it certainly is not the only 
information of interest to an applied researcher. In reporting a confidence 
interval for a given estimation problem one relies upon the accuracy of the 
standard error as well. Since estimated standard errors are known to under- 
estimate the true standard error in many cases, such as GLS estimation, one 
wonders to what degree this problem characterizes adaptive estimators. 

To address this concern, we construct a I-test of the null hypothesis that p 
equals 1 against a two-sided alternative. Our test is based upon a nominal 
size of 5 percent; in tables 5 through 7 we report the empirical size of the 
tests for a sample size of 50, while in tables 11 through 13 we use 500 
observations. 
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Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimodal2 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimodal 2 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Table 10 

Root mean squared error for b, T = 500. 

OLS 

0.1021 

0.0999 
0.1007 
0.0996 

0.0994 
0.1004 
0.1003 

0.0999 
0.1010 
0.1009 

0.0475 

0.0473 
0.0472 
0.0478 

0.0480 
0.0480 
0.0475 

0.0476 
0.0474 
0.0476 

GLS” 

x - Bernoulli 

0.0879 

0.0934 
0.0889 
0.0852 

0.0959 
0.0937 
0.0876 

0.0891 
0.0911 
0.0893 

x - Lognormal, AR(l) 

0.0526 

0.0497 
0.0479 
0.0463 

0.0543 
0.0480 
0.0478 

0.0519 
0.0526 
0.0520 

ADAPT= 

0.0858 

0.0838 
0.0730 
0.0345 

0.0794 
0.0311 
0.0345 

0.0692 
0.0710 
0.0372 

0.0458 

0.0454 
0.0374 
0.0257 

0.0462 
0.023 1 
0.0184 

0.0402 
0.0398 
0.0285 

- 

LLE 

0.0796 

0.0768 
0.0657 
0.0353 

0.0752 
0.0356 
0.0720 

0.0706 
0.0661 
0.1021 

0.0435 

0.0425 
0.0363 
0.0238 

0.0422 
0.0270 
0.0387 

0.0392 
0.0400 
0.0503 

“Based on 1000 Monte Carlo simulations. 

The fifth table lists the results for the experiments with an independent 
error process. The OLS estimator again shows it is robust to a wide variety of 
distributional misspecifications with an empirical size that is roughly 5 per- 
cent in all cases. The LLE is more erratic, in the upper panel its empirical 
size ranges from 3 to 8 percent while in the lower panel the size reflects a 
conservative test. One factor is that the estimated covariance matrix for the 
LLE, formed from the outer product of the sample scores, is fragile for 
samples of 50 observations. 

The adaptive estimator has an empirical size that averages nearly 30 
percent across both panels. The estimated covariance matrix for this estima- 
tor is the same as the outer product used for the LLE with the exception that 
the estimated density is used in place of the actual density. A comparison of 
the two reveals the degree of bias introduced into the standard errors 
through the use of a nonparametric component. The large increase in the 
empirical size of the adaptive estimator relative to the LLE indicates that the 
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limiting distribution provides a poor guide to the distribution, based upon 
only 50 observations. For the lognormal densities we report the size when 
both values of the trimming parameter are used. Decreasing the amount of 
trimming introduces more bias, while reducing the variance in the kernel 
estimator, and as the departure from normality grows this leads to a large 
increase in the bias of the standard errors. 

Table 6 lists the empirical sizes for the experiments in which E follows an 
AR(l). For the Bernoulli regressor case the OLS estimator continues to have 
approximately the right size. When we move away from this case to the lower 
panel in which the regressor is continuous we have the standard result that 
the uncorrected OLS standard errors are misleading and the empirical size 
exceeds 15 percent. For the GLS estimators we find the test is slightly 
conservative in the upper panel, while the bias of the GLS standard errors is 
slightly less than most of their OLS counterparts in the lower panel. Once 
again the performance of the LLE is highly erratic and its empirical size 
increases substantially as the departure from normality grows. The true size 
is especially sensitive to densities for which a one-step estimator may not 
provide a good approximation such as the bimodal 3. The results for the 
adaptive estimator are fairly comparable to those noted above, an average 
size of 30 percent that is roughly constant across densities. While indicating 
the problems with the first-order asymptotic expansion that we have outlined 
above, the results for the third members of both the bimodal and lognormal 
families indicate the smoothed kernel density estimator can reduce the bias 
in the adaptive estimator and its standard errors for small samples. 

The results of the MA(l) experiment are found in table 7. All of the 
findings are broadly consistent with the AR(l) experiment. Both least squares 
estimators exhibit a significant downward bias in their standard errors in the 
lower panel with empirical sizes between 10 and 20 percent. The LLE suffers 
from potential bias throughout and the degree of bias grows with the 
departure from normality. The adaptive estimator has an empirical test size 
of more than 30 percent that is relatively constant across densities. The 
smoothed estimator of the density reduces the true test size substantially 
below that of the LLE for the densities with the most significant departures 
from normality. 

To see if this problem is principally due to the small samples size we have 
reported the results for T = 500 in tables 11-13. For the design in which the 
errors are independent, reported in table 11, we see that the empirical size 
has been greatly reduced. While most of the values range between 4 and 8 
percent, the densities representing the most extreme departures from nor- 
mality are characterized by empirical sizes in excess of 10 percent. 

This pattern is repeated in tables 12 and 13. For the AR(l) experiment the 
size of the adaptive estimator is on average slightly above 10 percent. This is 
roughly comparable to the average LLE size and represents a significant 
improvement over the results reported in table 6, where the size for the 
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Normal 

Unimodal 1 
Unimodal2 
Unimodal3 

Bimodal 1 
Bimodal2 
Bimodal3 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Normal 

Unimodal 1 
Unimodal2 
Unimodal3 

Bimodal 1 
Bimodal 2 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

Table 11 

Empirical size of a nominal 5 percent test, T = 500. 

E, - Independent 

OLS ADAPT” 

x - Bernoulli 

0.0469 0.0730 

0.0522 0.0860 
0.0520 0.1170 
0.0523 0.0930 

0.0528 0.0640 
0.0492 0.0440 
0.0541 0.1150 

0.0526 0.0410 
0.0509 0.0570 
0.0477 0.1130 

n - Lognormal, AR(l) 

0.05 16 0.0610 

0.0508 0.0880 
0.0557 0.1220 
0.0535 0.1520 

0.0533 0.0520 
0.0452 0.1150 
0.05 19 0.0530 

0.0480 0.0640 
0.0497 0.0640 
0.0494 0.1630 

LLE 

0.0468 

0.0493 
0.0476 
0.0632 

0.0495 
0.0664 
0.0980 

0.0487 
0.0533 
0.0782 

0.0483 

0.0495 
0.0524 
0.1380 

0.0443 
0.0772 
0.1113 

0.0193 
0.0578 
0.1461 

“Based on 1000 Monte Carlo simulations. 

adaptive estimator was roughly three times that for the LLE. Similar results 
are shown in table 13 where again the test size for the adaptive estimator is 
roughly equivalent with that of the LLE. This increase in the sample size also 
improves the precision with which the error parameter is estimated. This 
leads directly to a reduction in the test size of the GLS estimator as can be 
seen most noticeably by comparing tables 7 and 13. 

While the larger sample leads to a decrease in the empirical test size of the 
adaptive estimator, the size is still related to the underlying density. In a 
number of cases, the empirical size increases with the degree of the depar- 
ture from normality. As can be seen in table 14, these are the densities 
typically associated with the smallest value of u. 

This finding relates directly to the choice of the smoothing parameter 
discussed earlier. When the full sample is used to construct a cross-validated 
estimator of the density, the smoothing parameters chosen are typically much 
smaller than when a sample of 50 observations is used. While this accords 
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Table 12 

Empirical size of a nominal 5 percent test, T = 500. 

EI = 0.5.q _ , + u, 

OLS GLV 

x - Bernoulli 

Normal 0.0518 0.0400 

Unimodal 1 0.0528 0.0470 
Unimoda12 0.0533 0.0450 
Unimodal3 0.0541 0.0550 

Bimodal 1 0.0504 0.0410 
Bimoda12 0.0574 0.0510 
Bimodal3 0.0544 0.0440 

Lognormal 1 0.0504 0.0550 
Lognormal 2 0.0488 0.0550 
Lognormal 3 0.0495 0.0630 

x - Lognormal, AR(l) 

Normal 0.1781 0.0600 

Unimodal 1 0.1664 0.0500 
Unimodal2 0.1808 0.0480 
Unimoda13 0.1760 0.0480 

Bimodal 1 0.1734 0.0540 
Bimoda12 0.1852 0.0470 
Bimoda13 0.1815 0.0480 

Lognormal 1 0.1725 0.0490 
Lognormal 2 0.1807 0.0610 
Lognormal 3 0.1686 0.0490 

“Based on 1000 Monte Carlo simulations. 

ADAPT a LLE 

0.0890 0.0477 

0.0970 0.0545 
0.1190 0.0499 
0.1050 0.0938 

0.0710 0.0526 
0.0580 0.1222 
0.1510 0.1389 

0.0470 0.0200 
0.0870 0.0596 
0.0930 0.1202 

0.0840 

0.1010 
0.1380 
0.2380 

0.0670 
0.2240 
0.1220 

0.0890 
0.0940 
0.2460 

0.0541 

0.0603 
0.0749 
0.1605 

0.0565 
0.1182 
0.1512 

0.0397 
0.0980 
0.1386 
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with the requirement that u shrink as T grows larger, it leads to values of u 
that are too small for a reliable estimator of the derivative of the density. 

An alternative method for selecting u is the bootstrap algorithm employed 
by Hsieh and Manski (1987). While their experiments don’t match ours 
exactly, there is some overlap for T = 50. Since the results are relatively 
insensitive to both the choice of the regressors and correlation structure of 
the errors, table 14 presents the smoothing parameter values only for the 
model in which both the regressors and the errors are serially uncorrelated. 
As mentioned above, when the departure from normality grows, the optimal 
size of the smoothing parameter shrinks. The nonparametric kernel is simply 
reacting to the clustering of these densities, as the concentration of points 
increases outlying observations are given smaller weights. For the four 
densities that overlap, we have presented the optimal values of the smoothing 
parameter selected by Hsieh and Manski. Using the mean square error 
criterion function, the smoothing parameter selected by the data in three out 
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Table 13 

Empirical size of a nominal 5 percent test, T = 500. 

E, = Li, + osu,_, 

OLS GLSa ADAPT= LLE 

Normal 

Unimodal 1 
Unimoda12 
Unimodal3 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

0.0578 

0.0500 
0.0545 
0.0483 

0.0502 
0.05 11 
0.0512 

0.0484 
0.0523 
0.0509 

x - Bernoulli 

0.0660 

0.0900 
0.1130 
0.0480 

0.0950 
0.0580 
0.0720 

0.1000 
0.0450 
0.0830 

Normal 0.1143 

Unimodal 1 0.1133 
Unimodal2 0.1135 
Unimoda13 0.1148 

Bimodal 1 0.1235 
Bimoda12 0.1234 
Bimoda13 0.1189 

Lognormal 1 0.1181 
Lognormal 2 0.1163 
Lognormal 3 0.1097 

x - Lognormal, AR(l) 

0.0750 

0.0410 
0.0920 
0.0630 

0.0580 
0.0940 
0.1350 

0.0640 
0.0510 
0.0920 

0.0880 0.0621 

0.0990 0.0522 
0.1250 0.0577 
0.0950 0.1226 

0.0610 0.0584 
0.0650 0.1280 
0.1520 0.1939 

0.0700 0.0279 
0.0810 0.0765 
0.1070 0.1663 

0.0780 0.0577 

0.0910 0.0573 
0.1150 0.0661 
0.1770 0.1148 

0.0640 0.0572 
0.1870 0.0755 
0.1110 0.1131 

0.0630 0.0328 
0.0670 0.0886 
0.1730 0.1230 

aBased on 1000 Monte Carlo simulations. 

Table 14 

Optimal values of the smoothing parameter. 

MSE criterion HM bootstrap 

Normal 

Unimodal 1 
Unimoda12 
Unimoda13 

Bimodal 1 
Bimoda12 
Bimoda13 

Lognormal 1 
Lognormal 2 
Lognormal 3 

0.23 0.05 

0.22 
0.18 
0.09 0.10 

0.24 
0.10 0.10 
0.04 

0.22 
0.20 
0.07 0.10 
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of the four cases is equivalent with the value chosen by their bootstrap 
design. In the remaining case, the normal, the distribution of the estimators 
is quite robust to the choice of the smoothing parameter and the optimizing 
function is extremely flat. The equivalence of these two techniques indicates 
that bootstrapping the nonparametric density estimator may lead to values of 
the smoothing parameter that are too small for reliable score function 
estimation. A more promising approach is to apply either the bootstrap or 
cross-validation methods directly to the nonparametric estimator of the score 
function. In this way one may avoid the selection of values of (+ that cause 
the estimator of the derivative of f to be unstable. 

5. Conclusion 

The finite sample results presented above are quite striking, indicating that 
a large sample size is not needed to generate substantial efficiency gains. 
Across a range of distributions with significant departures from normality the 
adaptive estimators produce root mean squared errors that are on average 10 
to 30 percent smaller than their OLS or GLS counterparts for a sample of 
only 50 observations. When the sample is increased to 500 observations the 
efficiency gains are even more pronounced. Yet for distributions that exhibit 
only slight departures from normality the estimators can suffer efficiency 
losses of 10 to 15 percent. This warns against the use of adaptive procedures 
unless nonnormality is strongly suspected. 

Further, the empirical size of the adaptive estimators is quite poor for very 
small samples, in our experiments nearly 30 percent for a nominal size of 5 
percent. Increasing the sample size brings about rapid gains, reducing the 
empirical size to 10 percent, roughly equivalent to the linearized likelihood 
estimator it is trying to emulate. 

The results presented above rely on parsimonious representations of the 
error process. However, we believe our findings are applicable to a wide 
range of potential ARMA models. Although the adaptive estimators failed to 
capture efficiency gains for the first-order autoregressive process, these 
results may be misleading. For this special case the results are extremely 
sensitive to the choice of the relatively inefficient OLS estimator as the 
starting value. A more relevant example is provided by the first-order moving 
average process. It is merely the simplest way to characterize the difficulties 
which arise in estimating more general ARMA models. For this case the 
adaptive estimators exhibit efficiency gains of nearly the same magnitude as 
in the case where the errors are independent. Therefore, adaptive estimators 
are potentially applicable in a wide range of circumstances. 

While this paper answers several important questions, it also raises others. 
Future work should address the problem of selecting the smoothing parame- 
ter, perhaps by examining the possibility of bootstrapping the score function 
directly. There is also room for improvement in the nonparametric estimator 
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of the density. A technique that incorporates a variable bandwidth, such as 
nearest neighbor estimation, may be helpful here. Using it one would not 
need to specify trimming parameters and could avoid any problem of excess 
trimming. 

We hope that this work will provide researchers with a road map to these 
relatively uncharted regions of estimation. While adaptive estimators present 
a powerful alternative to robust methods of estimation, they should not be 
applied blindly. As this work shows, they are most appropriate in settings in 
which there is reason to believe that the errors exhibit substantial departures 
from normality. Under these circumstances, when the problem of precise 
estimation is interesting adaptive procedures make it attainable. 

Appendix 

The random numbers used in this study are generated in the following way. 
For each sample, a call is made to the internal clock time which randomizes 
the seed used in the Cray intrinsic function ranf. The independent, uniform 
[O, 11 numbers are then transformed into the draws from a normal (0, i) 
distribution using the following formulas: 

Xi= (-lnZi)“*cos(2i7Z,+,), Xjsl = (-In Zi)l’*sin(2rrZ,+,), 

where Z N U[O, 11 and X * N(0, i). All of the distributions we employ in this 
study are simple transformations of this normal distribution. 
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